Applications and Opportunities with European Wood Modification

Holger Militz

Professor and Head Wood Biology and Wood Products
Georg-August University Göttingen
Germany

Own research background

- 1987 2000: TNO/ SHR Timber Research, The Netherlands
 - Heat treatment technology (PLATO)
 - Acetylation technology (Accoya)

- · 2000 today: University Göttingen
 - Belmadur
 - Silicones/ Silanes
 - Furfurylation (Kebony)
 - Waxes/ oils
 - Melamines/ phenols

Content of presentation

Wood modificationWhy?

- Processes and material
- Products and markets

Wood: material of the future

- Ecological
- · Sustainable
- · Renewable
- Esthetical
- · Traditional and modern

Wood: material of the future

- Energy efficient
- End-of-life: energy

Wood: material of the future?

Weak points:

- Moisture sensitive
- UV-stability
- · Dimensional movements
- · Resistance against fungi
 - · Soft surface

Wood: material of the future?

Maintenance problems due to dimensional instability and UV instability!

Solutions/ Alternatives?

- Use wood with high natural quality (as many tropical hardwoods)
 - Availability (mid term, long term)
 - Sustainability
- Use of wood preservatives
 - · Toxicity issues
 - New biocides with low impact
 - Only durability item solved
- Use of new technologies for wood treatment
 - Wood modification!

What is "wood modification"?

What is wood modification?

Wood modification technology

- Heat treatment
- Acetylation (Accoya)
- DMDHEU (Belmadur)
- Furfurylation (Kebony)
- · Silicone/Silane
- Oil / Wax/ Parafins

· Chitosan/

Extractives etc.

On the market production capacity

Production capacity built

??

Challenges: "from idea to commercial applications"

(PhD defense Stig Lande 2008/ ECWM 2009 Militz, Lande)

Technology development

Product development

Business development

- · Raw materials
- Chemical reactions
- Process parameters

- Material interactions
- Quality control
- Market requirements

- Market
- Economy
- Intellectual property

Thermo treatment (TMT, Thermowood)

- no chemicals
- temperature 180° C to 220° C
- many wood species used
- difference between producers:-technology used

ThermoWood® process 250 200 150 150 Phase 1 Phase 2 Phase 3 0 12 24 36 t(h)

Photos: Plato process

Status quo of production (2010): EUWID

(Europäischer Wirtschaftsdienst)

 Production in Finland, Germany, France, Croatia, Austria, Switzerland, Netherlands, Turkey, Sweden, Estonia

- Total capacity approx. 200.000 m³/ year
- · Finland approx. 100.000 m³/ year
- · Largest plants: 30.000 m³/ year
- Smallest plants: 1.000 m³/ year
- New plants planned/ under construction

Use class 3 (EN 335)

(Photos by Thermowood Association, Finland)

Use class 3 (EN 335) (Photos by Mitteramskogler/ Austria)

Use class 1-2 (EN 335) (Photos by Mitteramskogler/ Austria)

Use class 1-2 (EN 335) (Photos by Mitteramskogler/ Austria)

Modification technology based on liquids

- Belmadur[®] Technology
 - (DMDHEU)
- Kebony[®] Technology
 - (Furfurylation)
- Accoya[®] Titanwood
 - (Acetylation)
- · Silanes/ Silicones

Modification based on liquids

- · liquid, catalyst
- vacuum-pressure impregnation
- drying and reaction
- · drying temp: above 100 °C

Materials and methods

• NMM-BS impregnation of beech

• High temperature curing

Belmadur® Technology

DMDHEU

(1,3-dimethylol-4,5-dihydroxyethylene urea)

Originally:

- textile modification
- (Easy Care Cotton)

Cross-linking cellulose molecules

Foto: BASF

Process development of the recent years

· Solid wood

Veneers

Wood composites

- Particles
- Fibres

· WPC

Main focus last years: upscaling processes

Belmadur® Technology

Room temperature

Temperature > 100° C

Superheated steam process

Development of construction

massive wood	wooden lamella	sandwich	functional layer
frames made from solid wood blocks	all lamella consist of same wood	Lamella consist of different wood	Choice of material regards the function

New product...new process...

DMDHEU particle boards

Treatment of particles in "reactor"

- closed system
- vacuum ~30 mbar (org. solvents possible [DMSO])
- temp. until 350 ° C
- volume 140 l
- treatment of approx. 10 kg particles and 6 kg fibres

Kebony® Technology

Furfural

Furfuryl alcohol

Basic materials

- Hydration from Furfural
- Furfural by distillation from waste of bagasse, corn, rice, peanut..

Kebony® production

Autoclave: 13 m length, 3.25 m diameter (0.1 - 13 bar)

Kebony® products

www.kebony.com

Kebony® Products

Kebony® products

Accoya® Titanwood

Process:

- impregnation with acetic anhydride
- reaction at elevated temperatures
- post treatment (acetic acid)

Photos: SHR (NL)

Production plant, Arnhem, NL

Accoya® products

Bridge in Sneek (NL)

Lorry bridge (60t lorries, 40 m length)

silicon based compounds

Silanes, silicones

Introduction

types of silanes

Y = "Organo-functional groups" OX = "Silicone-functional group OCH₃, OC₂H₅ etc.

Material properties

TMT: new material, new properties

Water uptake

Capillary water uptake

- water absorption coefficient shows the water uptake in relation to time [kg/m²/ \sqrt{h}]
- Reduced water uptake after modification

Water absorption coefficient [kg/m²/√h] in tangential (left) and longitudinal direction (right)

Material evaluation

Modified hardwood at natural weathering test according to EN 927-3

Surface appearance

Beech control

30% NMM modified beech

Surface appearance

30% NMM-BS yellow modified beech 30% NMM-BS brown modified beech

Outside weathering - results

- · significant lower m.c. than untreated material
- uncoated furfurylated is lower than untreated/ coated

Moisture content [%] of SYP samples over a period of 21 month

Sorption properties

(Tjeerdsma, Boonstra 1990's)

Swelling and shrinking of wood species

Relative swelling of wood species from 0% moisture content to fibre saturation point

Brinell hardness (parket flooring)

Strength testing: MOR bending mode (Bollmus 2010)

MOE in bending mode (DMDHEU)

(Bollmus 2010)

Impact bending strength

(Bollmus 2010)

Biological testing of new materials

- · Biocidal action?
- ·Solely lab testing?
- Performance testing in field?
- Product testing?

Degradation of beech wood after 32 weeks in soil contact (ENV 807)

Main material properties gained with NMM

Durability improvement

Pine modified with 10% NMM after 16 weeks EN 113; DBU-Report, Az: 26869 (2009)

Fungal resistance as function of process conditions (Tjeerdsma, Militz 2002)

Pinus silvestris

- Soil block test
- Weight loss after 54 weeks

Termite resistance: test fields Australia, Portugal, lab tests Spain

General results: Coptotermes/ Mastotermes

· Es

- Heavy attack in both fields (adequate feeding pressure)
- Pinus sylvestris controls
 - Sapwood 100 % attacked
 - Heartwood well protected

Results Coptotermes acinaciformis

Challenge: wood species

- Selection of right wood species
 - What are criteria?
 - macroscopical versus microscopical distribution of chemical

Wood - Treatability / Permeability (Photos by Kebony)

Obvious effect for impregnation technology

Wood - Treatability / Permeability

No obvious effect for thermowood

Durability of heat treated Pine and Spruce

(PLATO process, Boonstra 2008)

- Mass loss of treated and untreated Spruce/ Pine
- Incubation with *C. puteana* and *C.versicolor*
- Test standard: CEN /TS 15083-1

Basis materials for wood modification

- Easy "treatable"
- Large quantaties
 - Pines
 - Poplars
 - Beech?
 - Eucalypts?
 - Ash? Alder?
 - Other fast growing wood species!

Glueability of scantlings

Cleavage test

- 85-100% failure mode in furfurylated material
- For fulfillment of the standard, ≥ 90% of wood failure is required
- All wood species met the requirements of the standard

Failure mode [%] in wood after cleavage with a planer blade

Challenge: processing, costs and markets

Other factors of concern to clients...

- Environmental concerns
 - · Emissions to air
 - · Emissions to water
 - · Human tox
 - · Eco tox
 - · Working environment

Furniture, Thermowood

- Machinability and further processing
 - ·Tools
 - · Material homogenity
 - · Glueability/ paintability
 - · End product performance
- Disposal/ recycling
 - · Reuse of fibres?
 - Energy burning?
 - · Land fill

Potential markets for modified wood

Outdoor

- Decking
- Roofing
- Utility poles
- Rail ties
- Fences
- Garden furniture
- Bridges
- Marine applications
- And more...

Indoor

- Flooring
- Windows
- Doors
- Furniture
- Mouldings
- And more...

Decking, Accoya

Roofing, Kebony

Floor, Kebony

Bridge, Accoya

Decking, Belmadur

Chair, Belmadur

Challenge: markets

- · Biocide treated wood
 - Costs!!
 - Special products
- Markets of tropical hardwoods
 - use classes 1-5
 - "high quality"
- Special products with diverse functions

ECWM European Conferences on Wood Modification

 ECWM 6: Sept. 2012 in Ljubljana, Slovenia

ECWM 2014: Lisbon/ Portugal

ECWM 2016: Helsinki/ Finland

(Proceedings ECWM 1-6: contact me!)

