

presentation by Prof. George Mantanis

Special thanks to Dr. Dennis Jones and Prof. Callum Hill

Why modify wood?

Improving the performance of wood by modifying its molecular structure

Potential property improvements

- ✓ **Durability**
- Moisture resistance
- Dimensional stability
- Paint adhesion
- Colour and/or resistance to UV radiation
- Resistance to weathering

Create new markets for local timber

- Hope to compete against tropical hardwoods
- Promote sustainable timber sources

Definition

'Wood modification involves the action of a chemical, biological, or physical agent upon the material **resulting in a permanent change** to the polymeric chemical composition; with such a change **leading to a desired property enhancement**. The modified wood <u>should itself be non-toxic under service conditions</u> and furthermore, there should be no release of any toxic substances during service, <u>or at end of life following</u> <u>disposal or recycling</u> of the modified wood'

Range of modification methods

Based on four wood modification classes:

• <u>Chemical modification</u>

Acetylation-Accoya, Furfurylation-Kebony

• <u>Thermal modification</u>

ThermoWood, Plato Wood, Menz holz, ThermoHolz, Calignum, Retification

- Impregnation / polymerisation
 Belmadur, Indurite
- Enzymatic modification

No commercial method available yet

Acetylation

- Reaction with acetic anhydride
- Commercially available
 - Titanwood
 (Accoya)
- Over 20 years of laboratory results

Furfurylation

Treatment with furfuryl alcohol

SUGAR

BAGASSE

FUR FURYL ALCOHOL

Recognised as environmentally friendly

FURFURAL

 Commercially available (Kebony)

Thermal treatment

- Range of commercial operations
- Heat in absence of oxygen
- Severity of treatment affects appearance and properties

Impregnation / polymerisation

Belmadur

- Based on DMDHEU
- Used in textile industry
- Developed in Germany and commercialised by BASF

Impregnation / polymerisation

Indurite

- Developed in New Zealand
- Starch-based treatment
- Bought out by
 Osmose
- Regarded as "wood into wood"

Maltodextrin from starch

Enzymatic treatments

Adhesive properties

- Several test programmes
 Mainly across Europe
- Need to assess suitability of adhesives

Possible new product ranges and uses

Acetylation

Delamination test

PU adhesives

- Purbond HB181 / HB230
- Tested according to EN 391:2001
- 0% opening
- Pass according to EN 386

Acetylation

- Variety of adhesives tested
 - Fulfil requirements for laminated beams in exterior use (climate class III) according to EN386

Resin Type	Code	Open glueline (mm)	Wood failure (%)
PRF	Aerodux 185	0	87
	Aerodux 185	2	75
	Aerodux 185	0	92
	Enocol RL490	29	13
PU	Purbond HB181	1	89
	Purbond HB181	0	93

Source: Tjeerdsma et al. Proc. ECWM3, 2007

Thermal treatment summary

- Wide range of adhesives tested (DIN 68603, EN392 block shear, EN302-2 delamination)
 - 1- and 2-component PVAc adhesives
 - 1- and 2-component polyurethane adhesives (PU)
 - Resorcinol phenol adhesives (RF)
 - emulsion-polymer-isocyanate adhesives (EPI)
- Glueability linked to severity of treatment
 - Greater wood failure at high temperatures
 - Longer cure times required to allow absorption of glue into wood

Glulam / Finger Jointing

- Glulam works well for heat treated pine
 - MUF
 - Resorcinol
- Normal production parameters
- Finger jointing also gave good results
 - MUF, PVAc, 2 x PU
- The joints were firm with all tested parameters
 - Maximum pressure was 22 N/mm2, (>10x the pressure needed for a firm glue line)

Furfurylated timber

- Very little reported on adhesive properties (under question)
 - Similar properties to tropical timbers
- Kebony has been used as intermediate boat-decking & parquet
- Likely to be strong interaction to furfural-based adhesives
 - Phenol-resorcinol-furfural
 - Tannin-resorcinol-furfural

Kebony applications

Impregnation / polymerisation

 Belmadur – can be glued as any other timber
 Veneers bonded with hot melt

PF (Dynosol S-576)

 Indurite – range of adhesives tested

No determinable difference in performance when compared using the EN302:1 lap shear test

 Mainly timber failure before bond failure

Conclusions

Adhesive bonding of modified wood is possible

- Wide range of examples
- Only limited effect of modification
 Water-based adhesive systems
- New products entering the market
- Possibility of tailoring adhesives to properties of modification

Special thanks to

NAPIER UNIVERSITY EDINBURGH

Thanks for your attention